Learning Sub-Word Units for Open Vocabulary Speech Recognition
نویسندگان
چکیده
Large vocabulary speech recognition systems fail to recognize words beyond their vocabulary, many of which are information rich terms, like named entities or foreign words. Hybrid word/sub-word systems solve this problem by adding sub-word units to large vocabulary word based systems; new words can then be represented by combinations of subword units. Previous work heuristically created the sub-word lexicon from phonetic representations of text using simple statistics to select common phone sequences. We propose a probabilistic model to learn the subword lexicon optimized for a given task. We consider the task of out of vocabulary (OOV) word detection, which relies on output from a hybrid model. A hybrid model with our learned sub-word lexicon reduces error by 6.3% and 7.6% (absolute) at a 5% false alarm rate on an English Broadcast News and MIT Lectures task respectively.
منابع مشابه
THE JOHNS HOPKINS UNIVERSITY Sub-Lexical and Contextual Modeling of Out-of-Vocabulary Words in Speech Recognition
Large vocabulary speech recognition systems fail to recognize words beyond their vocabulary, many of which are information rich terms, like named entities or foreign words. Hybrid word/sub-word systems solve this problem by adding sub-word units to large vocabulary word based systems; new words can then be represented by combinations of subword units. We present a novel probabilistic model to l...
متن کاملHybrid Language Models Using Mixed Types of Sub-Lexical Units for Open Vocabulary German LVCSR
German is a highly inflected language with a large number of words derived from the same root. It makes use of a high degree of word compounding leading to high Out-of-vocabulary (OOV) rates, and Language Model (LM) perplexities. For such languages the use of sub-lexical units for Large Vocabulary Continuous Speech Recognition (LVCSR) becomes a natural choice. In this paper, we investigate the ...
متن کاملSub-Word Unit based Non-Audible Spe Electromyogr
In this paper we present a novel approach for a surface electromyographic speech recognition system based on sub-word units. Rather than using full word models as integrated in our previous work we propose here smaller sub-word units as prerequisites for large vocabulary speech recognition. This allows the recognition of words not seen in the training set based on seen sub-word units. Therefore...
متن کاملUnlimited vocabulary speech recognition based on morphs discovered in an unsupervised manner
We study continuous speech recognition based on sub-word units found in an unsupervised fashion. For agglutinative languages like Finnish, traditional word-based n-gram language modeling does not work well due to the huge number of different word forms. We use a method based on the Minimum Description Length principle to split words statistically into subword units allowing efficient language m...
متن کاملLinguistically-motivated sub-word modeling with applications to speech recognition
Despite the proliferation of speech-enabled applications and devices, speech-driven human-machine interaction still faces several challenges. One of theses issues is the new word or the out-of-vocabulary (OOV) problem, which occurs when the underlying automatic speech recognizer (ASR) encounters a word it does not ”know”. With ASR being deployed in constantly evolving domains such as restaurant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011